Page 1 of 1

Introducing image search models

Posted: Thu Jul 10, 2025 10:42 am
by aminaas1576
Making use of an embedding model offers another path forward. Embeddings essentially take an input i.e. text or image, and return a bunch of numbers. For example, the text prompt: ‘an image of a dog’, would be passed through an embedding model, which ‘translates’ text into a matrix of numbers (essentially a grid of numbers).

What is special about these numbers is that they should capture some semantic information about the input; the embedding for a picture of a dog should somehow capture the fact that there is a dog in the image. Since these embeddings consist of numbers, we can also compare one embedding to another to see how close they are to each phone number library other.

We expect the embeddings for similar images to be closer to each other and the embeddings for images which are less similar to each other to be farther away. Without getting too much into the weeds of how this works, it’s worth mentioning that these embeddings don’t just represent one aspect of an image, i.e. the main object it contains but also other components, such as its aesthetic style. You can find a longer explanation of how this works in this post.

Finding a suitable image search model on the Hugging Face Hub
To create an image search system for the dataset, we need a model to create embeddings. Fortunately, the Hugging Face Hub makes it easy to find models for this.